Annexe T - Interprétation des signalements d'objets volants non identifiés - Projet "Sign", n° F-TR-2274-IA, Annexe "C"

G. E. Valley

  Home  >  Rapport Condon  >  Sommaire  

Annexe "C" - Considérations affectant l'interprétation des signalements d'Objets Volants Non Identifiés

Par G. E. Valley, Membre du Comité de Conseil Scientifique, Bureau du Chef d'Etat-Major, Force Aérienne des Etats-Unis

Le rédacteur a étudié des résumés de synthèse et commentaires touchant aux objets volants non identifiés, qui furent transmis par le renseignement de l'Air Force. Ces remarques sont divisées en 3 grandes parties :

  1. un court résumé des signalements ;
  2. un survol général des diverses possibilités d'explication des signalements ;
  3. certaines recommandations pour une action future.

Partie 1 - Bref résumé des observations

Les signalements peuvent être regroupés comme suit :

  1. Les signalements les plus nombreux indiquent l'observation de jour d'objets semblables à des disques, d'un diamètre grossièrement de 10 fois leur épaisseur. Il y a des suggestions que la section de coupe soit asymmétrique et plutôt comme une carapace de tortue. Ces signalements s'accordent sur le fait que ces objets sont capable de hautes accélération et vitesse ; ils sont souvent observés en groupes, parfois en formation. Parfois ils flottent.
  2. des signalements de lumières observées de nuit. Elles sont également capables de hautes vitesse et accélération. Elles sont vues moins souvent en groupes. Elles apparaissent généralement comme des objets lumineux précisément définis.
  3. des signalements de divers types de fusées, apparaissant en général d'une manière comparable aux fusées V-2.
  4. signalements de divers appareils qui, de l'opinion du rédacteur, sont sounding balloons de forme inhabituelle tels que ceux fabriqués via le contrat entre la General Mills Company et la Marine.
  5. des signalements d'objets auquel on ne peut accorder que peu de crédit.
Remarques générales

En général, il est noté que peu, sinon aucun des signalements indiquent que les objets observés produisent quelque bruit ou interférence radio. Pas plus qu'il n'y a d'indications de quelque affectation de matériel ou de dommage physique aux objets observés.

Synthèse -- Partie 1

Ce rapport considèrera princiaplement les rapports des groupes 1 et 2.

Partie 2 - Sur les explications possibles des signalements

Section A - Que peut-on déduire de la nature d'un objet aérien inconnu d'après une seule observation ?

Ici, il y a 2 problèmes : d'abord, combien peut être déduit concernant la nature des objets d'après les seuls calculs géometriques ; ensuite, combien peut être déduit si, en plus, il est supposé que les objets obéissent aux lois de la nature telles que nous les connaissons.

Concernant le 1er problème, on peut indiquer ne peuvent être déterminés précisement que des ratios de longueurs, et des taux de changement de tels ratios. Ainsi, l'échelle et la taille de tels objets ne peuvent être déterminés ; et il est notable que des signalements de taille des objets observés sont d'une large variabilité. Cependant, les angles, tel que l'angle sous-tendu par l'objet, peuvent être observés. De même il existe un accord honnête entre plusieurs observateurs sur le fait que le diamètre des objets du groupe 1 est d'environ 10 fois leur épaisseur. Bien que la vitesse ne puisse être déterminée, la vitesse angulaire le peut, et en particulier la fréquence de flottament pourrait, en principe, être déterminée.

Tout ce qui peut être conclu sur l'échelle et la taille des objets, d'après les seules considérations géometriques, est que :

  1. d'après le fait que les tailles estimées varient si largement, les objets étaient en fait de tailles différentes, ou plus probablement, suffisamment éloignés des observateurs pour la vision binoculaire n'ait pas produit d'effet stéréoscopique ; cela signifie seulement qu'ils étaient plus loin que 30 pieds environ ;
  2. puisque les objets étaient observés disparaissant derrière des arbres, bâtiments, nuages, etc., ils sont suffisamment grands pour être visibles aux échelles de ces objets reconnaissables.

Maintenant, il est évidemment de première importance d'estimer la taille et la maisse des objets observés. Ceci pourrait être possible dans une certaine mesure s'il est permissible de supposer qu'ils obéissent aux lois de la physique. Les objets n'auant pas été observés produisant de quelconques effets physiques, autres que le cas dans lequel un nuage fut évaporé le long de la trajectoire, il n'est pas certain que les lois de la mécanique, par exemple, seraient suffisantes.

Mais en supposant que les seules lois mécaniques sont suffisantes, alors l'exemple suivant est une preuve suffisante qu'au moins une longueur pourrait, en principe, être déterminée : supposez un simple pendule était observé suspendu dans le ciel ; alors après avoir observé sa fréquence d'oscillation, nous pourrions déduire sa longueur précise des lois de la mécanique.

Ceci suggère que quelque chose pourrait être déduit du mouvement flottant observé de certains des objets du groupe 1. Supposant que nous connaissons la fréquence angulaire et l'amplitude angulaire de ce mouvement flouttant (ils peuvent être mesurés en principe d'après un film). Alors dans des buts de calcul supposons l'objet comme étant de 30 pieds de diamètre, comme étant aussi rigide qu'une aile normale d'un appareil de 30 pieds d'envergure, à construire d'un matériau du ratio poids-solidité optimum et comme étant une structure de la plus efficace des conceptions. Il est maintenant possible de calculer comment l'objet doit être lourd pour simplement rester rigide under the observed angular motion. Let the calculation be made for a plurality of assumed sizes 1, 2, 4, 8, 16, 32, 64 -- up to say 200 feet, and let calculated r1mass be plotted versus assumed size. The non-linear character of the curve should indicate an approximate upper limit to the size of the object.

If, in addition, it is assumed that the flutter is due to aerodynamic forces, it is possible that more precise information could be obtained.

The required angular data can probably be extracted from the witnesses most reliably by the use of a demonstration model which can be made to oscillate or flutter in a known way.

Summary -- PART II, Section A

Geometrical calculations alone cannot yield the size of objects observed from a single station; such observation together with the assumption that the objects are essentially aircraft, can be used to set reasonable limits of size.

Section B -- The possibility of supporting and propelling a solid object by unusual means.

Since some observers have obviously colored their reports with talk of rays, jets, beams, space-ships, and the like, it is well to examine what possibilities exist along these lines. This is also important in view of the conclusions of PART II, Section A, of this report.

Method I -- Propulsion and support by means of "rays" or "beams".

By "rays" or "beams" are meant either purely electromagnetic radiation or else radiation which is largely corpuscular like cathode-rays or cosmic-rays or cyclotron-beams.

Now, it is obvious that any device propelled or supported by such means is fundamentally a reaction device, it is fundamental in the theory of such devices that a given amount of energy is most efficiently spent if the momentum thrown back or down is large. This means that a large mass should be given a small acceleration -- a theorem well understood by helicopter designers.

The beams or rays mentioned do the contrary, a small mass is given a very high velocity, consequently enormous powers, greater than the total world's power capacity, would be needed to support even the smallest object by such means.

Method II -- Direct use of Earth's Magnetic Field

One observer (incident 68) noticed a violent motion of a hand-held compass. If we assume from this that the objects produced a magnetic field, comparable with the Earth's field, namely, 0,1 gauss, and that the observer found that the object subtended an angle Q at his position, then the ampere-turns of the required electromagnet is given by:

ni = 30R
Q2
   where R is the range of the object.

For instance, if R is one kilometer and the object is 10 meters in diameter, then ni ~= 1 billion ampere-turns.


NCAS EDITORS' NOTE: In the original, as well as in the Bantam edition, the symbol in the sentence above above was "not equal", which appears to have been a typo.

Now if the object were actually only 10 meters away and were correspondingly smaller; namely, 10 cm in diameter, it would still require 10 million ampere-turns.

These figures are a little in excess of what can be conveniently done on the ground. They make it seem unlikely that the effect was actually observed.

Now, the Earth's magnetic field would react on such a magnet to produce not only a torque but also a force. This force depends not directly on the Earth's field intensity but on its irregularity or gradient. This force is obviously minute since the change in field over a distance of 10 meters (assumed diameter of the object) is scarcely measurable, moreover the gradient is not predictable but changes due to local ore deposits. Thus, even if the effect were large enough to use, it would still be unreliable and unpredictable.

Method III -- Support of an electrically-charged object by causing it to move transverse to the Earth's magnetic field.

A positively-charged body moving from west to east, or a negatively charged body moving from east to west will experience an upward force due to the Earth's magnetic field.

A sphere 10 meters diameter moving at a speed of one kilometer per second would experience an upward force of one pound at the equator if charged to a potential of 5 x 10^12 volts. This is obviously ridiculous.

Section B - Le bouclier anti-gravité

It has been proposed, by various writers, perhaps first by H.G.Wells, that it might be possible to construct a means of shielding a massive body from the influence of gravity. Such an object would then float. Recently, there appeared in the press a notice that a prominent economist has offered to support research on such an enterprise.

Obviously, conservation of energy demands that considerable energy be given the supported object in order to place it on the shield. However, this amount of energy is in no way prohibitive, and furthermore it can be gotten back when the object lands.

Aside from the fact that we have no suggestions as to how such a device is to be made, the various theories of general relativity all agree in assuming that gravitational force and force due to acceleration are indistinguishable, and from this assumption the theories predict certain effects which are in fact observed. The assumption, therefore, is probably correct, and a corollary of it is essentially that only by means of an acceleration can gravity be counteracted. This, we can successfully do for instance by making an artificial satellite, but this presumably is not what has been observed.

Synthèse -- Partie 2, Section B

Several unorthodox means of supporting or propelling a solid object have been considered, all are impracticable. This finding lends credence to the tentative proposed assumption of Part II, that the objects are supported and propelled by some normal means, or else that they are not solids. No discussion of the type of Part II, Section B, can, in principle, of course, be complete.

Section C - Causes possibles des signalements

Classification I -- Phénomène terrestre naturel

1. The observations may be due to some effect such as ball lightning. The writer has no suggestions on this essentially meteorological subject.

2. The objects may be some kind of animal.

Even in the celebrated case of incident 172 where the light was chased by a P51 for half an hour and which was reported by the pilot to be intelligently directed, we can make this remark. For considering that an intelligence capable of making so remarkable device would not be likely to play around in so idle a manner as described by the pilot.

In this connection, it would be well to examine if some of the lights observed at night were not fire-flies.

3. The observed objects may be hallucinatory or psychological in origin.

It is of prime importance to study this possibility because we can learn from it something of the character of the population; its response under attack; and also something about the reliability of visual observation.

One would like to assume that the positions held by many of the reported observers guarantee their observations. Unfortunately, there were many reports of curious phenomena by pilots during the war -- the incident of the fire-ball fighters comes to mind. Further, mariners have been reporting sea-serpents for hundreds of years yet no one has yet produced a photograph.

It would be interesting to tabulate the responses to see how reliable were the reports on the Japanese balloons during the war. There we had a phenomenon proven to be real.

It is interesting that the reports swiftly reach a maximum frequency during the end of June 1947 and then slowly taper off. We can assume that this is actually an indication of how many objects were actually about, or, quite differently, we can take this frequency curve as indicating something about mass psychology.

This point can be tested. Suppose the population is momentarily excited; hew does the frequency of reports vary with time? A study of crank letters received after the recent publicity given to the satellite program should give the required frequency distribution.

It is probably necessary but certainly not sufficient that the unidentified-object curve and the crank-letter curve should be similar in order for the flying disks to be classes as hallucinations.

A large-scale experiment was made at the time of the Orson Welles "Martian" broadcast. Some records of this must persist in newspaper files.

Classification II -- Phénomènes terrestres fabriqués par l'homme
  1. Les objets pourraient être un appareil russe. Si c'était le cas, alors les considérations des Sections A et B indiquent que nous aurions beaucoup à nous en faire. Il est de l'opinion de l'auteur que seule une découverte accidentelle d'un degré de nouveauté jamais accompli jusqu'ici pourrait permettre d'expliquer de tels appareils. On peut douter qu'un ennemi potentiel éveille notre curiosité d'une manière si progressive.
Classification III -- Objets extra terrestres
  1. Méteores : It is noteworthy that the British physicist Lovell writing in "Physics Today" mentions the radar discovery of a new daytime meteorite stream which reached its maximum during June 1947. The reported objects lose little of their interest, however, if they are of meteoritic origin.
  2. Animaux : Although the objects described act more like animals than anything else, there are few reliable reports on extra-terrestrial animals.
  3. Vaisseaux spatiaux : The following considerations pertain:
    1. If there is an extra terrestrial civilization which can make such objects as are reported then it is most probable that its development is far in advance of ours. This argument can be supported on probability arguments alone without recourse to astronomical hypotheses.
    2. Such a civilization might observe that on Earth we now have atomic bombs and are fast developing rockets. In view of the past history of mankind, they should be alarmed. We should, therefore, expect at this time above all to behold such visitations.

Since the acts of mankind most easily observed from a distance are A-bomb explosions we should expect some relation to obtain between the time of A-bomb explosions, the time at which the space ships are seen, and the time required for such ships to arrive from and return to home-base.

Partie 3 - Recommandations

  1. Le dossier devrait être complété.
  2. Un météorologue devrait calculer l'énergie approximative requise pour évaporer autant de nuage que montré dans les photographies de l'incident 26. Together with an aerodynamicist he should examine whether a meteorite of unusual shape could move as observed.
  3. Les calculs suggérés en Partie 2, Section A devraient être estimatés par un aérodynamicien avec les changements que ses connaissances plus détaillée pourraient suggérer.
  4. Les études de psychologie de masse décrites en Partie 2, Section C, Classification I 3 devraient être menées par une équipe compétente de statisticiens et psychologues de masse.
  5. Interviewing agents should carry objects or moving pictures for comparison with reporter's memories. These devices should be properly designed by a psychologist experienced in problems pertaining to aircraft and design of aircraft-control equipment so that he shall have some grasp of what it is that is to be found out. If the Air Force has reason to be seriously interested in these reports, it should take immediate steps to interrogate the reporters more precisely.
  6. A person skilled in the optics of the eye and of the atmosphere should investigate the particular point that several reports agree in describing the objects as being about ten times as wide as they are thick; the point being to see if there is a plurality of actual shapes which appear so, under conditions approaching limiting resolution or detectable contrast.

S-11750

  Home  >  Rapport Condon  >  Sommaire